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Abstract

A procedure has been developed for improvement of surface triangulation
quality by node repositioning as directed by a two-stage non-linear opti-
mization technique. The surface mesh modification procedure is designed
so that the quality of the triangles is improved without drastically distort-
ing the surface. Repositioning of the nodes is done using local parametric
mapping so that they remain on the triangles of the original mesh.

Introduction

Surface meshes play an important role in mesh generation and mesh based
analysis applications. The success of mesh generation algorithms like the
advancing front algorithm and the quality of solid elements they gener-
ate depends on the quality of the surface mesh. Surface meshes also de-
fine boundaries of computational domains, and therefore, their quality can
strongly influence the accuracy of numerical analysis procedures. Therefore,
optimization of surface mesh quality is a very important problem. This pa-
per presents a method for improving the quality of a surface triangulation
by node repositioning.

An important consideration in surface mesh optimization is to minimize
the deviation of the modified mesh from the original mesh while improving
element quality. When the surface mesh is constructed upon an underlying
smooth surface, it is usual to use the 2D parametric space of the smooth
surface to reposition nodes. Repositioning nodes in the parametric space
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of the surface guarantees that the nodes will remain on the surface when
they are mapped back to real space. Then, the modified and original meshes
approximate the surface equally well, considering the deviations of the mesh
triangles from the smooth surface.

Ensuring the similarity between the original and modified meshes is more
challenging when there is no underlying smooth surface for reference. Such
surface triangulations occur frequently during surface reconstruction us-
ing sampled data points. Also, in moving mesh simulations, triangulations
based on a smooth surface may get deformed enough so that the param-
eterization of the surface is unusable for node repositioning. One method
employed for surface optimization in such cases is to compute a parametric
map from the surface triangulation and use it to reposition points of the
mesh [1]. Doing so ensures that the nodes of the mesh stay on the triangles
of the original mesh. However, developing a global parameterization of a
triangulation requires a computationally expensive solution of a non-linear
system of equations. Also, trianglulations of closed surfaces must be cut
into two or more pieces and mapped as separate surfaces with this method.

In this paper, a procedure is presented to optimize surface meshes by reposi-
tioning nodes in a series of local parametric spaces constructed by barycen-
tric mapping of triangles [2] of the original or base mesh. The repositioning
of nodes is directed by a numerical optimization procedure [3] that is de-
signed to improve the geometric shape of triangles while keeping the mod-
ified mesh as close as possible to the base mesh. The method has been
tested on a number of surface meshes and has proved to be very effective.

Overview

The surface quality optimization procedure described here consists of two
stages. The first stage is a local optimization process in which the optimal
position of each mesh vertex is calculated with respect to the fixed positions
of its neighbors. The objective function of the local minimization is con-
structed from Jacobian matrix condition numbers of triangles connected to
the vertex under consideration [3, 4].

Consider a vertex Vi, connected to a set of of edges, {E(Vi)}, and triangles,
{F (Vi)}. Assume that one of the triangles Fj ∈ {F (Vi)} has edges Ep ∈
{E(Vi)} and Eq ∈ {E(Vi)} connected to vertex Vi. Then, the Jacobian
matrix, Jji, of Fj at vertex Vi is defined as Jji = [ep eq] where, ep and eq are
edge vectors representing edges Ep and Eq of lengths lp and lq respectively.

Since Jji is a 3x2 matrix for a 3D triangle, its condition number must be
calculated by singular value decomposition methods. On the other hand,



the Jacobian matrix of a triangle in 2D space is a 2x2 matrix whose condi-
tion number can be calculated more easily as κ(Jji) = (l2p + l2q)/Aj , where
Aj is twice the area of face Fj [3, 4]. This condition number is only a
function of triangle lengths1; therefore, it is invariant with rotation of the
triangle in the plane. Since there always exists a coordinate system in
which an arbitrarily oriented triangle lies on one of its coordinate planes, it
suggests that the condition number is also useful for measuring the quality
of arbitrarily oriented triangles in space.

Using the definition of Jacobian matrices for triangles, an objective function
for the first stage optimization is defined as:

ψc(xi) =
∑

j

κ(Jji(xi)) =
∑

j

l2p(xi) + l2q(xi)
Aj(xi)

, j ∈ {j | Fj ∈ {F (Vi)}}

where lp and lq are defined as before and xi is the coordinate vector of Vi.
Note the presence of area Aj in the denominator as a barrier function which
discourages node movements that tend to make the triangle degenerate.

The vertex position calculated in the first optimization is stored as the
reference position of the vertex but the vertex is not moved to this location.
After reference positions are calculated for all mesh vertices, two reference
edge vectors are calculated for each edge in the mesh; each reference edge
vector goes from the reference position of one vertex of the edge to the
original position of the other. The idea of reference edges is illustrated
in Figure 1, where Ek is an edge with vertices Vi and Vj . The reference
positions of Vi and Vj are V R

i and V R
j respectively. The two reference edges

vectors for Ek are (eR
k )i and (eR

k )j , where the outer subscript indicates
which of the vertices is at its reference position.

Using the concept of reference edge vectors, it is now possible to define
Reference Jacobian Matrices just as Jacobian matrices were defined for a
mesh without reference positions. Therefore, if the edges of Fj connected to
vertex Vi are Ep and Eq, then the reference Jacobian of Fj at Vi is defined
as JR

ji =
[
(eR

p )i (eR
q )i

]
.

The second stage of the surface mesh optimization is a global optimization
procedure based on the definition of reference Jacobian matrices. Its goal
is to find a configuration for all the mesh edges such that a compromise is
struck between the various pairs of reference edge vectors while forming a
valid mesh with improved triangle quality. Since the reference edge vectors

1Aj can be expressed as a function of the lengths of the triangle sides
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Figure 1. Reference positions and reference edge vectors.

were formed by locally improving the quality of triangles connected to each
mesh vertex, it can be expected that a valid set of edge vectors that achieves
a compromise between the various reference edge vectors will also improve
the quality of the mesh. Also, since each reference edge vector has one of
its vertices at the location of the original or base mesh, it is expected that
the optimized mesh will not deviate drastically from the base mesh.

To achieve the goal of the global optimization, an objective function is
formed that minimizes the difference between the Jacobian matrices of the
mesh being optimized and the reference Jacobian matrices as shown below:

ΨR =
∑

i

∑
j

‖Jji − JR
ji‖2

Aj/AR
ji

, i ∈ {i | Vi ∈ {V }}, j ∈ {j | Fj ∈ {F (Vi)}}

where, {V } is the set of all mesh vertices, ||.|| is the Frobenius norm, AR
ji is

the twice the reference triangle area, i.e., the area of Fj with vertex Vi at
the reference position V R

i . Note that, similar to the objective function for
local optimization, the objective function includes a barrier term Aj in the
denominator in the form of the triangle area to prevent mesh invalidity.

It is desirable to use a global procedure in the minimization of ΨR, in
which all the mesh vertices are moved simultaneously. However, for surface
optimization with local parametrization, the parametric bounds impose too
strong a constraint on a global optimization process. The line search in a
global optimization seeks a single step size for the parametric coordinates



of all the vertices in the mesh. Even if a parametric coordinate for a single
vertex goes out of bounds, the line search must end for all the parameters
in the problem, making the optimization very inefficient.

The solution adopted here is to reposition the vertices one at a time using a
local piece of the global objective function. Consider a vertex Vi, connected
to the set of faces {F (Vi)}. Then the piece of the global objective function
that involves the real or reference position of Vi is given as:

ψR
i =

∑
j

∑
k

‖Jjk − JR
jk‖2

Aj/AR
jk

, j ∈ {j | Fj ∈ {F (Vi)}}, k ∈ {k | Vk ∈ {V (Fj)}}

In the expression, the outer sum is over all triangles connected to the vertex
and the inner sum is over all vertices of a triangle. Each term in the
summation refers to the kth vertex of the jth triangle, Fj , connected to Vi.

With this modification, the two stages of the surface mesh optimization
become similar since both involve calculating an optimal position for each
vertex by minimizing a local function with respect to parametric coordi-
nates. For the first stage or local optimization stage, one iteration is made
over vertices of the mesh and the optimal but virtual position of each vertex
is calculated with its neighboring vertices fixed at their original positions.
The optimal positions are then used to calculate reference edge vectors for
the second stage. In the second stage or global optimization by local iter-
ation, several iterations are made over the mesh to reposition the vertices.
During each iteration, the optimal position of each vertex is calculated tak-
ing into account the positions of its neighboring vertices calculated in a
previous iteration. The iterations end when the movement of all the ver-
tices is negligible. At that point all the vertex positions are updated to the
newly computed positions resulting in an optimized surface mesh.

Optimization with respect to Parametric Coordinates

The local objective functions, ψc and ψR, defined in Section 2 are in terms
of real coordinates of the vertices. If an optimization procedure is applied
directly to these objective functions, it may indicate vertex movement off
the base surface mesh. To constrain the movement of the vertices to the tri-
angles of the base mesh, the objective functions are optimized with respect
to a local mapping of the triangles into 2D space.

Each base mesh triangle is parameterized using a barycentric mapping [2],
giving rise to parametric coordinates 0 ≤ (s1, s2) ≤ 1. All objective function



evaluations are performed after transforming the parametric coordinates
into real coordinates using the barycentric mapping. The gradient of the
objective function with respect to the parametric coordinates is calculated
using numerical differentiation. The gradient direction is used to compute
a search direction, d, in parametric space according to the principles of the
non-linear conjugate gradient method [5].

Vertices on surface boundaries (model edges) are also moved using a local
mapping of mesh edges that are on these boundaries. Each of these mesh
edges can easily be mapped into parametric space using one parameter
0 ≤ s1 ≤ 1. Then the gradient of the objective function2 with respect to
this one parameter is calculated and line search direction is determined to
be along or opposite to the edge direction. Vertices that are at corners
(model vertices) or vertices that are fixed by the user are not moved.

Line Search or 1D minimization

The purpose of the line search is to find a distance, α, along the parametric
search direction, d, such that the objective function is minimized or the con-
straints of the line search are encountered. For surface optimization with
local parameterization, the line search is subject to two constraints, para-
metric bounds and mesh validity. During the line search, if the parametric
bounds of the base triangle mapping are reached, the point has reached an
edge of the triangle in real space. Proceeding any further along that direc-
tion will move the point out of the base triangle and off the triangulation.
For example, in Figure 2a, the line search tries to proceed from point 2
to 3’ (which is outside the triangle and off the surface triangulation) but
encounters the parametric bounds of the triangle at 3. Also, it is possible
that one of the triangles connected to the vertex becomes invalid due to
the movement along the search direction in which case the line search must
be terminated. This is shown in Figure 2b where the line search must be
terminated at point 2 because further movement towards point 2’ renders
the shaded triangle invalid.

The line search procedure is implemented as an incremental stepping algo-
rithm with step size control. The line search starts with a very small step
size and checks if the function has decreased, the parameters are within
bounds and if the mesh is valid. If so, the step size is increased and the
process is repeated; if not, the step size is cut in half (up to a minimum)
and the checks are repeated. The algorithm has additional refinements for
zeroing in on the minimum with better accuracy.

2The form of the objective function remains the same no matter where it is computed
at.
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Figure 2. Line search constraints (a) Parameter bounds (b) Invalid Mesh.

Parameter Update and Parametrization Change

Once the line search along a direction has terminated, the step size (α)
obtained from it is used to update the parametric coordinates of the vertex
as snew = sold + αd. If the line search terminated normally at a minimum
or because further movement in the search direction would have made the
mesh invalid, the optimization iterations are continued as usual with a new
gradient calculation. However, if the line search terminated because the
parametric bounds were reached, then it is assumed that the vertex is trying
to move out of the current base triangle. In such a case, the optimization
is terminated, the adjacent triangle is adopted as the base triangle and the
optimization restarted in the parametric space of the new triangle. If the
vertex is at an edge of the base mesh and flips too many times between the
adjacent triangles, it is taken to be an indication that the line search must
proceed along the edge. The line search direction along the edge is taken
to be the one closer to the negative of the gradient direction.

Figure 3 illustrates the movement of vertices during the optimization with
respect to parametric coordinates using a planar triangulation example.
The mesh was optimized by performing several iterations of local optimiza-
tions using the condition number function, ψc, over all the vertices.

Results

Figure 4 shows a simple example to illustrate the effect of a global con-
dition number optimization and reference Jacobian based optimization on
a non-planar surface mesh. The objective function of the global condition
number optimization is defined as sum of the local condition numbers at all
mesh vertices. Figure 4a shows the original pyramid shaped mesh on which
the two optimization techniques are applied. Figure 4b shows the effect of
optimizing globally using just a Jacobian matrix condition number based
objective function. Figure 4c shows the effect of optimizing the mesh using
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Figure 3. (a) Original (light lines) and final (dark lines) mesh (b) Paths
taken by vertices to their final positions (c) Zoom-in of one of the paths.

the two-stage optimization method described in this paper. Clearly, the
two-stage optimization method using reference Jacobians causes less devia-
tion from the original mesh than the global condition number optimization,
even though it does not improve the shape of the triangles as much.

(a) (b) (c)
Figure 4. (a) Original Mesh (b) Mesh optimized with condition number
objective function (c) Optimized with reference jacobian objective function.

Figure 5 shows two views of an optimized triangulation superimposed on
the original curved surface triangulation. In Figure 5(a), the light lines
show the edges of the original mesh and the dark lines show the optimized
mesh. From the picture it is clear that the shape of the triangles is improved
but optimization process has not distorted the original surface much.

Figure 6 shows an example of a complex surface mesh improved with the
surface optimization procedure. The original mesh was constructed by tak-
ing a slice of a Raleigh-Taylor simulation mesh and curving it. Note that
the triangulation consists of two surfaces sharing a common interface. Fig-
ure 6a shows the original and improved meshes and Figure 6b shows a
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Figure 5. Superimposed views of optimized and original mesh (light edges)
for curved surface

(a)

(b)

Figure 6. (a) Original (left) and Final (right) meshes of multi-domain
curved surface triangulation (b) Zoom-in of optimized mesh edges overlaid
on original mesh triangles



zoom-in of the overlaid meshes. In Figure 6b, the edges of the optimized
mesh have been superimposed on the triangles of the original mesh. The
figures show that the method improves the triangle quality, and preserves
the shape of the surface and the curved boundaries of the surface.

Conclusions

A procedure was presented to improve the quality of complex surface meshes
using numerical optimization. The optimization is designed to improve the
quality of the triangles without distorting the discrete surface too much.
The vertices are kept on the original surface triangulation with the help of
a barycentric mapping of triangles. The procedure has been successfully
tested on a number of complex surface meshes. Future work will extend
the procedure to quadrilateral meshes and also develop more quantitative
measures for distortion of the surface.
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